
978-1-5386-6854-2/19/$31.00 ©2019 IEEE
1

Constraint-Based Off-Nominal
Behavior Modeling for Europa Clipper

Anthony Zheng, Bradley J. Clement, David K. Legg,
Michel D. Ingham, Kelli J. McCoy, Chester J. Everline

Jet Propulsion Laboratory, California Institute of Technology
4800 Oak Grove Drive
Pasadena, CA 91109

zhengant@umich.edu, leggd@uci.edu, first.[middle.]last@jpl.caltech.edu
818-393-4729

Abstract— The risk analysis for the Europa Clipper mission
evaluates the probability of mission failure based on the failure
rates of individual components and dependencies among them.
The probabilities are calculated by integrating over the intervals
of time within which a fault occurs, accounting for an infinite
number of cases. The response of the spacecraft to different
faults can result in different schedules of activities, changing the
intervals of integration. Europa currently uses models of
spacecraft systems and components to simulate individual flight
scenarios. The goal is to develop a framework for integrating,
automating, and improving this modeling process.

We describe an approach to generating the schedules for the
different fault cases and determining the intervals for faults. It
is not enough to just simulate individual cases because we are
working with continuous variables that generate an infinite
number of possible futures. Instead, we determine time windows
within which certain faults can occur and use these time
windows as bounds for integration. We found that determining
these time windows is a constraint optimization problem.

In order to represent these problems, we employ a language
based on ontologies of behavior and scenarios. The language
enables us to specify constraints in a simple, declarative syntax.
A constraint-based analysis engine uses the declarative
specification to identify bounds on system parameters and fill in
details of behavior.

For example, we created a detailed model of power generation,
power use, and the corresponding effects on the battery in order
to determine when an undervoltage fault can occur. An
undervoltage during a trajectory correction maneuver requires
that thrusting be interrupted for just enough time to recharge
the battery such that the maneuver can be completed within
battery limits. This behavior is generated based on the model to
minimize the interruption time.

For certain scenarios the constraint optimization problems were
simple enough to be solved by hand, but the framework made
the process substantially faster. It also produced solutions to
other problems that we could not solve by hand or with existing
tools and allowed us to generate and run many scenarios at once.
The scenario language and engine greatly simplified the process
of identifying time bounds and separating cases.

TABLE OF CONTENTS
1. INTRODUCTION .. 1
2. RISK MODELING CHALLENGE 2
3. JOI THRUSTER FAULT RECOVERY MODEL 3
4. SOLVING FRAMEWORK .. 5
5. RESULTS AND ANALYSIS .. 6
6. SUMMARY AND CONCLUSION 7
APPENDIX ... 8
A. HAND CALCULATIONS .. 8
ACKNOWLEDGEMENTS ... 9
REFERENCES .. 10
BIOGRAPHY .. 10

1. INTRODUCTION

The Probabilistic Risk Analysis (PRA) for the Europa
Clipper mission evaluates the probability of mission failure
based on the failure rates of individual components and their
relationships. PRAs for space missions often assess risk with
abstract mathematical models of faults and closed-form
formulas, with which probabilities can be calculated
[1][4][5]. Such formulas can often be computed very quickly,
which allows for easy validation of results and identification
of problems in the model, but developing these formulas
becomes more challenging as increasing detail about faults
and responses is incorporated. One approach to handle this
complexity is to model the functional relationships among
components and subsequently generate the closed-form
formula from that model [12], which we refer to as Model-
Based PRA (MBPRA). This approach calculates the
probability that the spacecraft is reliable as a function of time,
but relies on a nominal schedule and assumes that swapping
to redundant components takes insignificant time and that
recovery can be assessed based on relatively simple
deviations from the nominal schedule (see [9] for an example
of this approach).

Analysis of the Europa Clipper Jupiter Orbit Insertion (JOI)
sub-phase, in which the spacecraft executes a maneuver to
enter Jupiter's orbit, is complicated by the fact that some

2

faults cause significant changes to the JOI schedule. During
JOI, thruster failures can cause delays which increase the
amount of ∆v the spacecraft must achieve to complete JOI,
extending the burn duration. It is possible that such a delay
would exhaust the battery, requiring the spacecraft to stop
burning long enough to recharge, before continuing the
maneuver. Such major changes to the nominal schedule are
not readily captured by a single closed-form formula, nor by
traditional MBPRA techniques. Furthermore, exhaustive
simulation is impossible, since thruster faults can occur at any
time during the burn(s), effectively generating an infinite
number of possible timelines, and non-exhaustive simulation
of multi-component systems is difficult to do accurately [11].

We capture this behavior by grouping possible futures such
that faults occur in well-defined time windows, over which
the probability of thruster faults can be integrated.
Determining these time windows can be framed as a
constraint optimization problem, which we model using a
concise, declarative constraint language.

Furthermore, we describe a way to integrate this framework
with existing Model-Based Systems Engineering (MBSE)
tooling, including a web-based interface for diagrammatic
modeling and a textual modeling language that share a
common behavior-based ontology [8]. This moves towards
the Single-Source-of-Truth paradigm, intended to reduce
inconsistencies between models, and to clarify
communication between parties working on different aspects

of the mission [2]. This integration allows for several
different analyses, including those on planetary protection
[1], power management [10], and science sensitivity [9], to
share a common model of the mission and remain in
agreement with design requirements as design details evolve.

2. RISK MODELING CHALLENGE
Since MBPRA relies on the output of a simulation of nominal
spacecraft behavior to determine when components are
active, it cannot directly represent fault recoveries that
change the behavior of the spacecraft over a long period of
time. For Europa Clipper JOI, faults in the propulsion
subsystem could result in degraded behavior, and, if the total
thrust goal is not completed within a particular time frame,
then the mission could fail. Furthermore, multiple successive
thruster faults could occur, each increasing the degradation of
spacecraft behavior, possibly by different levels.

The timing and succession of faults do not fit the MBPRA
model in two ways. First, the spacecraft’s dependence on the
timing and level of degradation cannot be captured. Second,
a longer duration of thrust could result in depletion of the
battery, triggering an interruption in thrust to recharge. This
alternative course of events violates MBPRA’s assumption of
a nominal schedule.

Thus, the propulsion subsystem is treated as a special case.
To incorporate its behavior into the calculation, reliability is

Figure 1: Event tree for JOI. Scenarios 1-4 and 6-8 represent scenarios where mission success is still possible. Scenario
1 is nominal and the rest are off-nominal. The probability of mission failure is calculated as (1-P) where P is the total
probability of one of Scenarios 1-4 or 6-8 occurring. Modeling Scenarios 6-8 is analogous to Scenarios 2-4, just with a
different start time.

3

integrated over all possible sequences of faults. For example,
suppose that there are three successive faults, each resulting
in further degraded thrust capability. If the timing of the
second and third faults depend on the times of the first and
second, respectively, then the reliability is calculated with
three nested integrals. A deadline, 𝑇, for the thrust to
complete can bound the times of the faults. Now if the thrust
goal is achieved (requiring 6.5 hours) before the first fault
occurs then the faults do not matter. So, the upper bound of
the first integral is 6.5 hours. If there is a fault at time, 𝑥,
within 6.5 hours, the thrust becomes degraded and drawn out
over a longer period. So, the completion time if no second
fault occurs is a function, 𝑆$(6.5 − 𝑥), the remaining time to
reach 6.5 after the first fault multiplied by a slowdown factor
of 𝑆$. This is the upper bound of the integral for the second
fault. Similarly, if there is a second fault before the
completion, and the slowdown factor increases to 𝑆,, then the
completion time is 𝑆, -6.5 − 𝑥 −

$
./
𝑦1, the upper bound of

the third integral. Thus, the nested integral for calculating
reliability over the period of the thrust based on some
function, 𝑟(𝑥, 𝑦, 𝑧, 𝑇), is

4 4 4 𝑟(𝑥, 𝑦, 𝑧,  𝑇) 𝑑𝑧 𝑑𝑦 𝑑𝑥
.7-8.9:;:

$
./
<1

<

./(8.9:;)

;

8.9

=
(1)

The next section shows that in our case, the calculation of
these bounds for different scenarios is actually more
complicated.

The integration over fault times is the strategy for capturing
the more complicated fault behavior in closed-form, but
𝑟(𝑥, 𝑦, 𝑧, 𝑇) is complex, and it is unclear how to obtain its
closed-form. 𝑟(𝑥, 𝑦, 𝑧, 𝑇) is based on the MBPRA model,
and a reliability formula is generated based on a nominal
simulation. However, that simulation depends on 𝑥, 𝑦, and
𝑧, and can vary dramaticallyif the battery is depleted. Thus,
the reliability formula output of MBPRA must account for an
infinite set of these simulations, which it cannot. And even
if it could, the formula may be very large to capture different
combinations of behaviors. In the actual implementation, an
abstraction of the behavior is used to avoid this problem. But,
it is an open problem for which we do not have a general
strategy.

3. JOI THRUSTER FAULT RECOVERY MODEL
In this section, we describe how we incorporate the
possibility of thruster faults into a model of JOI completion.
This model is used later to compute bounds for the integrals
described in Section 2. Note that the model is hypothetical
and is unlikely to reflect the actual fault behavior of Europa
Clipper.

There are nine scenarios explored for JOI as shown in Figure
1. We focused on modeling the first four scenarios since
successfully modeling these gives us the foundational
capabilities to model the rest of the scenarios as well.
Scenarios 6 – 9 involve a delay in the burn start that we do
not include in this model but discuss in Section 5.

Scenario 1 represents a nominal JOI, defined as completing
the 900 m/s burn between 6.5 and 7.5 hours. In Scenario 2,
the spacecraft fails to complete JOI within 7.5 hours due to
some delay but completes it in less than 13.4 hours. If the
delay takes the spacecraft past 13.4 hours, the spacecraft will
need to burn for some additional Δv to complete JOI. The
amount of additional Δv necessary is a function of the
amount of delay and the amount of the burn already
completed and is modeled as a piecewise linear function. If
the amount of additional Δv necessary is less than 50 m/s,
then the spacecraft is in Scenario 3. Otherwise, the spacecraft
is in Scenario 4. These scenario definitions are summarized
in Table 1.

With no thruster losses, the spacecraft would complete the
entire burn on 8 thrusters. When the spacecraft experiences
thruster faults, it does so in pairs to maintain thrust symmetry.
We identify six additional cases to model: starting nominally,
with 8 thrusters, then experiencing a fault in one pair (8 to 6);
Starting with eight, and experiencing faults in two pairs
sequentially (8 to 6 to 4); Starting sub-nominally, with 6, but
experiencing no faults (6); Starting with 6 and experiencing
one fault (6 to 4); and starting with only 4, but experiencing
no faults (4). This gives us a total of seven cases for each of
the four scenarios.

Table 1: Summary of constraints for Scenarios 1-4

 Scenario 1 Scenario 2 Scenario 3 Scenario 4

JOI Completion Time
(hours)

6.5 ≤ 𝑡 ≤ 7.5 7.5 ≤ 𝑡 ≤ 13.4 𝑡 > 13.4 𝑡 > 13.4

Additional 𝜟𝒗 (m/s) 𝛥𝑣 = 0 𝛥𝑣 = 0 0 < 𝛥𝑣 < 50 𝛥𝑣 > 50

4

Let 𝛥𝑣LMNOLPQ be a constant equal to the amount of 𝛥𝑣
(change in velocity) necessary to complete a nominal burn.
Define 𝑡R as the amount of time spent burning on 𝑘 thrusters.
Define 𝑡R

($) as the amount of time spent burning using k
thrusters during the first burn (before any delay). Define
𝑡TUQP< as the amount of time between the two burns and C as
the percentage of the nominal burn, ignoring any additional
Δ𝑣 requirement, completed before the delay. Define Δ𝑣PTT

as the amount of additional Δ𝑣 added to correct for the delay.
We evaluate burn completion based on thruster-hours, where
1 thruster-hour is defined as the progress on a burn made by
burning on one thruster for one hour. A complete nominal
burn, not including any additional burn necessary for the
additional Δ𝑣, is defined as 𝜏LMNOLPQ thruster-hours, where
𝜏LMNOLPQ is constant. Defining 𝜏PTT to be the additional
thruster hours required because of the additional Δ𝑣, we have
the following constraints:

𝜏PTT =
Δ𝑣PTT ∗ 𝜏LMNOLPQ

Δ𝑣LMNOLPQ
(2)

8𝑡[+ 6𝑡8 + 4𝑡] = 𝜏LMNOLPQ + 𝜏PTT (3)

Similarly, we also have that

𝐶 =
𝑡[
($) + 𝑡8

($) + 𝑡]
($)

𝜏LMNOLPQ
(4)

For simplicity, we assume that the rate at which the battery
discharges and recharges is constant throughout this scenario,
regardless of the number of thrusters burning or the angle of
the spacecraft relative to the sun. A much larger model (not
discussed here) is used to determine more precisely how
power and battery state change over time. For this more
abstract model, this means that the time at which the
spacecraft undervolts is constant, 𝑇_LTU`aMQb. Using
𝑇_LTU`aMQb, we can get expressions for the 𝑡R

($):

𝑡[
($) = min(𝑡[, 𝑇_LTU`aMQb) (5)

𝑡8
($) = minf𝑡8, 𝑇_LTU`aMQb − 𝑡[

($)g (6)

𝑡]
($) = minf𝑡],𝑇_LTU`aMQb − 𝑡[

($) − 𝑡8
($)g (7)

The delay should be just long enough so that the spacecraft
can complete the second burn. Because the discharge and
recharge rates are constant, the length of delay is directly
proportional to the length of burn:

𝑡TUQP< = Rf𝑇_LTU`aMQb − (𝑡[+ 𝑡8 + 𝑡])g (8)

where R is some constant.

We model ∆𝑣PTT as follows:

𝑡TUQP< = Rf𝑇_LTU`aMQb − (𝑡[+ 𝑡8 + 𝑡])g (8)

where 𝑚 is based on 𝑡TUQP<: we have constants 𝑚$, . . . ,𝑚]

and 𝑇$, . . . , 𝑇] such that 𝑇$ ≤ 𝑡TUQP< ≤ 𝑇], 𝑚O ≤ 𝑚k and 𝑇O <
𝑇k for 𝑖, 𝑗 ∈ {1, . . . ,4}, 𝑖 < 𝑗, and that 𝑚 is linearly
interpolated between the 𝑚R for 𝑡TUQP< ∉ {1, . . .4}. The
objective in this example is find the minimize the amount of
time spent burning on eight thrusters such that 0 < ∆𝑣PTT <
𝐷, where 𝐷 is some constant.

The elements of the model described so far are common
across all the scenarios; specific models for each can be
created by adding the additional constraints from Table 1 to
restrict the model to a particular scenario.

// objective
var min_t8 : Real = minimize("t8")

// constants: assume these are given some value
var nominalDeltaV : Real
var tau_nominal : Real
var C : Real
var T_undervolt : Real
var R : Real
var D : Real
// declarations for m1...m4 and T1...T4 omitted
for brevity

// declare non-constant variables
var t8 : Real
var t6 : Real
var t4 : Real
var t8_1 : Real
var t6_1 : Real
var t4_1 : Real
var t_delay : Real
var deltaVAdded: Real
var tau_add : Real
var m : Real

// keep values positive
req t8 >= 0
req t6 >= 0
req t4 >= 0

// model the constraints
req tau_add = deltaVAdded *
 tau_nominal / nominalDeltaV
req 8*t8 + 6*t6 + 4*t4 = tau_nominal + tau_add
req C = (t8_1 + t6_1 + t4_1) / tau_nominal
req t8_1 = min(ta, T_undervolt)
req t6_1 = min(tb, T_undervolt, t8_1)
req t4_1 = min(tc, T_undervolt, t8_1, t4_1)
req t_delay = R*(T_undervolt - (t8 + t6 + t4))
req deltaVAdded = m(1 - C)
req deltaVAdded > 0 && deltaVAdded < D

// interpolation
req m =
 if t_delay >= T1 && t_delay < T2
 then m1 + (t_delay - T1)*(m2 - m1) /
 (T2 - T1)
 else
 if t_delay >= T2 && t_delay < T3
 then m2 + (t_delay - T2)*(m3 - m2) /
 (T3 - T2)
 else m3 + (t_delay - T3)*(m4 - m3) /
 (T4 - T3)

Figure 2: An example model of our optimization problem
written in K.

5

4. SOLVING FRAMEWORK
To generate the closed-form formula for the reliability of the
spacecraft during JOI, we separate the JOI sub-phase into
mutually exclusive scenarios with specific sequences of
faults. We have expressions for risk in terms of the amount
of time spent on a certain number of thrusters, which we
integrate over the time bounds within which a certain
scenario can occur [3][4]. The limits on these integrals are the
maximum and minimum amounts of time the spacecraft can
spend on a particular number of thrusters while still satisfying
the constraints of a given scenario. This means that we can
frame this problem as an optimization problem where we
iteratively maximize and minimize the amount of time spent
on 8 thrusters, 6 thrusters, and 4 thrusters for each scenario
and thruster case. In total, we have six objectives, seven
thruster cases, and four scenarios, for a total of 168 individual
optimization problems to solve.

1 K and BAE are available at https://github.com/Open-MBEE/kservices.

We used the K language paired with the Behavioral Analysis
Engine (BAE) to model and solve the optimization problems1.
The K language is a declarative language for describing
variables and constraints on the values of those variables
(Havelund, et al. 2016). The K language is linked into BAE,
a constraint-based solving engine that can take these
constraints and find a point solution that satisfies the
constraints, if such a solution exists, and optimize for
minimum or maximum value of a variable. It does not
guarantee completeness and optimality in general, but it does
for our particular set of problems.

To iteratively run the optimization problems, we wrapped the
K and BAE solver system with code that generates the K
models on the fly based on an existing SysML model, adding
the corresponding constraints to a set of base constraints that
describe the physics independent of the specific scenario.

Additionally, we have tooling to generate descriptions in K
of models described using an ontology of behavior shared by
other modeling tools, including BeCoS, an online
diagrammatic modeling tool [8]. This shared ontology makes
mechanical translation between diagrammatic and textual
representations efficient and accurate. Furthermore, the
linkage between this ontology and the K/BAE analysis
framework helps reduce miscommunication between design
engineers and risk analysis team members.

Case Constraints 𝜟𝒕𝟖 𝜟𝒕𝟔 𝜟𝒕𝟒

8 thrusters
throughout

𝛥𝑡[> 0𝛥𝑡8
= 0𝛥𝑡] = 0

No solution

Switch from 8 to
6 thrusters

𝛥𝑡[> 0𝛥𝑡8
> 0𝛥𝑡] = 0

0.62 < 𝛥𝑡[< 3.5 4.0 < 𝛥𝑡8 < 7.84 0.0

Switch from 8 to
6 to 4 thrusters

𝛥𝑡[> 0𝛥𝑡8
> 0𝛥𝑡] > 0

0.62 < 𝛥𝑡[< 5.5 0.0 < 𝛥𝑡8 < 7.84 0.0 < 𝛥𝑡] < 3.92

Switch from 8 to
4 thrusters

𝛥𝑡[> 0𝛥𝑡8
= 0𝛥𝑡] > 0

4.54 < 𝛥𝑡[< 5.5 0.0 2.0 < 𝛥𝑡] < 3.92

6 thrusters
throughout

𝛥𝑡[= 0𝛥𝑡8
> 0𝛥𝑡] = 0

No solution

Switch from 6 to
4 thrusters

𝛥𝑡[= 0𝛥𝑡8
> 0𝛥𝑡] > 0

No solution

4 thrusters
throughout

𝛥𝑡[= 0𝛥𝑡8
= 0𝛥𝑡] > 0

No solution

Table 2: Bounds on the amount of time spent burning on a certain number of thrusters for Scenario 2.

6

5. RESULTS AND ANALYSIS
Table 2 shows the time bounds calculated by BAE for the K
models for Scenario 2. “No solution” for a certain case means
that there are no times that the thrusters can fault in the way
the case describes and still be within the scenario. For this
example, this means that to be in Scenario 2, the spacecraft
must spend at least some time (0.62 hours) burning on 8
thrusters, but not too much (5.5 hours maximum).

For Scenarios 1 and 2, the optimization problems are simple
enough that we are able to validate those results against hand
calculations (see Appendix A).

We found that using the K/BAE framework provided a
number of important advantages compared to other
approaches. First, because of K’s simple and expressive
syntax, our models were easy to write and especially easy to
generate. At some point, we attempted to feed the
optimization problems into established linear or quadratic
programming solvers, but they all resulted in large, difficult-
to-read, and unintuitive models. The K language, on the other
hand, supports syntax like “if then else” for conditional
statements as well as some convenient built-in types,
allowing us to substantially reduce model size and
complexity. Figure 2 and Figure 3 showcase a particularly
good example of this – in Figure 2, we take full advantage of
K’s syntax features and can express the full optimization
problem in a fairly straightforward way. In Figure 3, we
express only the interpolation constraint (the last constraint
in Error! Reference source not found.) while restricting
ourselves to just linear constraints, which is what the GNU
Linear Programming Kit supports [6]. Expressing just the
interpolation constraint using only linear constraints takes
more code than expressing the entire model while making full
use of K’s features.

The advantages of this framework go beyond just
convenience and speed. In Scenarios 3 and 4, we have
constraints on the value for additional Δv. However, the
value for additional Δv depends on an interpolated value that
also circularly depends on the additional Δv itself. We could
not find a straightforward way to converge on a satisfying
solution by hand. The K/BAE framework was able to
successfully find solutions for these scenarios.

One shortcoming of the current K/BAE framework is the
inability to generate expressions as the solution for an
optimization problem. For instance, in the 8-to-6 case, we
know that the time required for 6 thrusters to operate is a
function of the time accomplished on 8 thrusters, but the
K/BAE framework can only solve for point solutions, like the
minimum and maximum time on 6 thrusters. When adding
another variable for delaying the start of the burn to
investigate Scenarios 6 – 9, the expressions for the time
bounds become much more complicated, and we decided that
it would be too difficult to use the BAE to obtain the
expressions. such that we could not simply transform the
bound values into expressions. Continuing with the BAE
would require software development for which did not plan.

//MINIMIZE
var y0 : Int
var y12 : Int
var y24 : Int
var y72 : Int

req 99999 * y0 - delayT >= 0
req 99999 * y12 - delayT >= - 12
req 99999 * y24 - delayT >= - 24
req 99999 * y72 - delayT >= - 72

//MAXIMIZE
var y0_12 : Int
req y0_12 - y0 <= 0
req y0_12 + y12 <= 1

var y12_24 : Int
req y12_24 - y12 <= 0
req y12_24 + y24 <= 1

var y24_72 : Int
req y24_72 - y24 <= 0
req y24_72 + y72 <= 1

//MINIMIZE
var slope : Real
var z0_12 : Int
req 99999 * z0_12 - slope + 21.2767 * x <= 0
req 99999 * z0_12 + slope - 21.2767 * x <= 0

var z12_24 : Int
req 99999 * z12_24 - slope - 24.4292 * x <= 37.83
req 99999 * z12_24 + slope + 24.4292 * x <= -37.83

var z24_72 : Int
req 99999 * z24_72 - slope + 10.2944 * x <= -301.405
req 99999 * z24_72 + slope - 10.2944 * x <= 301.405

var x_notin_0_12_or_interp : Int
2 * x_notin_0_12_or_interp + y0_12 - z0_12 <= 2
2 * x_notin_0_12_or_interp + y0_12 - z0_12 >= 1

var x_notin_12_24_or_interp : Int
2 * x_notin_12_24_or_interp + y12_24 - z12_24 <= 2
2 * x_notin_12_24_or_interp + y12_24 - z12_24 >= 1

var x_notin_24_72_or_interp : Int
2 * x_notin_24_72_or_interp + y24_72 - z24_72 <= 2
2 * x_notin_24_72_or_interp + y24_72 - z24_72 >= 1

req additionalDeltaV - slope * (1.0 - completed) = 0.0

// set bounds for binaries used throughout model
req y0 >= 0
req y0 <= 1
req y12 >= 0
req y12 <= 1
req y24 >= 0
req y24 <= 1
req y72 >= 0
req y72 <= 1

req y0_12 >= 0
req y0_12 <= 1
req y12_24 >= 0
req y12_24 <= 1
req y24_72 >= 0
req y24_72 <= 1

req z0_12 >= 0
req z0_12 <= 1
req z12_24 >= 0
req z12_24 <= 1
req z24_72 >= 0
req z24_72 <= 1

req x_notin_0_12_or_interp >= 0
req x_notin_0_12_or_interp <= 1
req x_notin_12_24_or_interp >= 0
req x_notin_12_24_or_interp <= 1
req x_notin_24_72_or_interp >= 0
req x_notin_24_72_or_interp <= 1

Figure 3: Linear interpolation in K using only linear
constraints. Compare this to the previous solution in
Figure 2 that took full advantage of K's features and
achieved this in just one constraint.

7

Therefore, in order to generate these expressions, we
modeled the problem in Mathematica, using the Reduce
utility to solve for desired variables. This approach required
a preprocessing step which estimated how to sub-divide
scenarios such that the resulting systems of equations were
simple enough for Reduce to solve in a feasible time
frame. Recombining these smaller solutions yields a
numerically correct expression, at the cost of being too large
and complex to yield insight into the problem. Furthermore,
initial attempts to automatically simplify the expression
proved too computationally expensive to be viable.

Mathematica is able to capture the K model given in a
straightforward way. We did not choose to model in
Mathematica originally since we already had a larger model
of the spacecraft in K and thought that the expressions for the
time bounds would be simple, as they are in Scenarios 1 – 4.
Moreover, K/BAE has language constructs for activities and
state/resource variables that help specify behavior at a higher
level.

6. SUMMARY AND CONCLUSION
In our attempt to integrate more general behavior modeling
with existing analytic models supporting probabilistic risk
analyses, we encountered difficult problems in accounting for
infinite fault cases in a closed-form calculation. Part of the
problem is determining time bounds on when interdependent
faults can occur in different scenarios, which feed into nested
integrals for calculating reliability.

Using the declarative K language based on scenario and
behavior ontologies with the BAE solver, we are able to solve
168 optimization problems to obtain nested time integral
bounds for most of the scenarios of interest. We validated
our results against those that we could solve by hand.

Taking advantage of K’s features gave us simpler and more
expressive models than those that other optimization toolkits
would take. We were also able to plug into existing
documentation tools making it possible to use this framework
at a high level. A more detailed model of the spacecraft in K
is used to determine undervoltage conditions.

One main limitation of the framework is that it solves for
values, but we need to solve for expressions. The bounds on
the amount of time spent on six thrusters actually depends on
the amount of time spent on eight thrusters, so for the
integrals, we would want to use these dependent expressions
for the limits rather than just absolute values (see Appendix
A). For more complicated cases (Scenarios 6 – 9), our
approach was insufficient, but Mathematica was able to
generate those formulas, although they are very large and
difficult to manage.

	

8

APPENDIX
A. HAND CALCULATIONS

We initially hand calculated solutions to Scenarios 1 and 2
and used these results for validation (Tables 3 and 4,
respectively).	

Table 3: Hand calculated time bound values for Scenario 1.

Case 𝜟𝒕 𝜟𝒕𝟖 𝜟𝒕𝟔 𝜟𝒕𝟒
8 thrusters throughout 6.5 6.5 0 0
Switch from 8 to 6
thrusters

6.5 < 𝛥𝑡 ≤ 7.5 3.5 ≤ 𝛥𝑡[
< 6.5

4
3
(6.5 − 𝛥𝑡[)

0

Switch from 8 to 6 to 4
thrusters

6.5 < 𝛥𝑡 ≤ 7.5

3.5 < 𝛥𝑡[
< 6.5

if 𝛥𝑡[< 5.5	𝑡ℎ𝑒𝑛
11 − 2𝛥𝑡[≤ 𝛥𝑡8
<
4
3
(6.5 − 𝛥𝑡[)

if 𝛥𝑡[≥ 5.5	𝑡ℎ𝑒𝑛
0 < 𝛥𝑡8
<
4
3
(6.5 − 𝛥𝑡[)

2 }6.5 − 𝛥𝑡[

−
3
4𝛥𝑡8

~

Switch from 8 to 4
thrusters

6.5 < 𝛥𝑡 ≤ 7.5

5.5 ≤ 𝛥𝑡[
< 6.5

0 2(6.5 − 𝛥𝑡[)

6 thrusters throughout Not possible
Switch from 6 to 4
thrusters

Not possible

4 thrusters throughout Not possible

9

 ACKNOWLEDGEMENTS
The research was carried out at the Jet Propulsion Laboratory,
California Institute of Technology, under a contract with the
National Aeronautics and Space Administration.

We would like to thank Cameron Burnett for his major
contribution to behavior modeling.

Table 4: Hand calculated time bound values for Scenario 2.

Case 𝜟𝒕 𝜟𝒕𝟖 𝜟𝒕𝟔 𝜟𝒕𝟒
8 thrusters
throughout

Not possible

Switch from 8 to 6
thrusters

7.5 < 𝛥𝑡

<
4
3 ⋅ 6.5

0.62 < 𝛥𝑡[
< 3.5

4
3
(6.5 − 𝛥𝑡[)

0

Switch from 8 to 6 to
4 thrusters

7.5 < 𝛥𝑡
< 2 ⋅ 6.5

0.62 < 𝛥𝑡[
< 5.5

if 𝛥𝑡[< 4.54	𝑡ℎ𝑒𝑛
4.54 ⋅ 2 − 2𝛥𝑡[
≤ 𝛥𝑡8
<
4
3
(6.5 − 𝛥𝑡[)

if 𝛥𝑡[≥ 4.54	𝑡ℎ𝑒𝑛
0 < 𝛥𝑡8
<
4
3
(6.5 − 𝛥𝑡[)

2 }6.5 − 𝛥𝑡[−
3
4𝛥𝑡8

~

Switch from 8 to 4
thrusters

7.5 < 𝛥𝑡
< 2 ⋅ 6.5

4.54 < 𝛥𝑡[
< 5.5

0 2(6.5 − 𝛥𝑡[)

6 thrusters
throughout

Not possible

Switch from 6 to 4
thrusters

Not possible

4 thrusters
throughout

Not possible

10

 REFERENCES
[1] M. DiNicola, K. McCoy, C. Everline, K. Reinholtz, and

E. Post, “A mathematical model for assessing the
probability of contaminating Europa,” in 2018 IEEE
Aerospace Conference, 2018, pp. 1–20.

[2] G. F. Dubos, D. P. Coren, A. Kerzhner, S. H. Chung, and
J. Castet, “Modeling of the flight system design in the
early formulation of the Europa Project,” in 2016 IEEE
Aerospace Conference, 2016, pp. 1–14.

[3] C. J. Everline, “Bayesian Approach to Quantifying
Epistemic Uncertainty in a Processor Availability model,”
Journal of Spacecraft and Rockets, vol. 49, no. 6, pp.
1019–1031, 2012.

[4] C. J. Everline and T. Paulos, “Comparison of techniques
for modeling accident progression in dynamic aerospace
applications with and without repair,” Reliability
Engineering & System Safety, vol. 91, no. 3, pp. 370–377,
Mar. 2006.

[5] C. J. Everline et al., “Estimating the reliability of
electronic parts in high radiation fields,” May 2008.

[6] GNU, “GNU Linear Programming Kit,” Free Software
Foundation, Inc., 2018

[7] K. Havelund, R. Kumar, C. Delp, and B. Clement, “K: A
wide spectrum language for modeling, programming and
analysis,” in 2016 4th International Conference on Model-
Driven Engineering and Software Development
(MODELSWARD), 2016, pp. 111–122.

[8] J. Kaderka, M. Rozek, J. Arballo, D. Wagner, and M.
Ingham, “The Behavior, Constraint, and Scenario
(BeCoS) Tool: A Web-Based Software Application for
Modeling Behaviors and Scenarios,” in 2018 AIAA
Aerospace Sciences Meeting, Kissimmee, Florida, 2018.

[9] K. McCoy, B. Nairouz, B. Bradley, L. Jones-Wilson, and
S. Susca, “Assessing the science robustness of the Europa
clipper mission: Science sensitivity model,” in 2018 IEEE
Aerospace Conference, 2018, pp. 1–13.

[10] B. V. Oaida, K. Lewis, E. Ferguson, J. Day, and K.
McCoy, “A statistical approach to payload energy
management for NASA’s Europa Clipper mission,” in
2018 IEEE Aerospace Conference, 2018, pp. 1–12.

[11] T. Paulos, “A Discussion of Failure Mode Modeling of
Complex Components and Overall Component
Reliability,” PSAM 2016, p. 8, 2016.

[12] S. Schreiner, M. L. Rozek, A. Kurum, C. J. Everline, M.
D. Ingham, and J. Nunes, “Towards a methodology and
tooling for Model-Based Probabilistic Risk Assessment
(PRA),” in AIAA SPACE 2016, American Institute of
Aeronautics and Astronautics, 2016.

BIOGRAPHY

Anthony Zheng is currently pursuing a
B.S.E. in Computer Science
Engineering at the University of
Michigan College of Engineering in
Ann Arbor. He spent his summer in
2018 working as an intern at the NASA
Jet Propulsion Laboratory.

Brad Clement is a senior member of the
technical staff at the Jet Propulsion
Laboratory in Pasadena, CA. He
received a bachelor degree in computer
engineering from the Georgia Institute
of Technology and M.S. and Ph.D.
degrees in computer science and
engineering from the University of
Michigan, Ann Arbor. His interests

include artificial intelligence, planning, scheduling,
multiagent coordination, uncertainty in AI, robotics,
distributed and real-time systems, and control systems.

David Legg is currently pursuing a B.S.
in Mathematics and Computer Science
at University of California, Irvine. He
spent the summers of 2017 and 2018 as
an intern at the NASA Jet Propulsion
Laboratory, where he supported
ongoing efforts to integrate engineering
models and analysis tools.

Mitch Ingham is a senior software
system engineer in the Flight Software
Systems Engineering and Architecture
Group at the Jet Propulsion
Laboratory. His research interests
include model-based methods for
systems and software engineering,
software architectures, and spacecraft

autonomy. He earned his Sc.D. and S.M degrees from MIT
in Aeronautics and Astronautics, and a B.Eng. in Honours
Mechanical Engineering from McGill University in
Montreal, Canada.

Kelli McCoy began her career at NASA
Kennedy Space Center in 2004 as an
Industrial Engineer in the Launch
Services Program, following her
graduation from Georgia Tech with a
M.S in Industrial and Systems
Engineering. She went on to obtain a
M.S. in Applied Math and Statistics at

Georgetown University, and subsequently developed
probability models to estimate cost and schedule during her

11

tenure with the Office of Evaluation at NASA Headquarters.
Now at Jet Propulsion Laboratory, she has found
applicability for math and probability models in an
engineering environment and is currently developing that
skillset as the Lead of the Europa Project Systems
Engineering Analysis Team.

Chet Everline’s expertise is in
probabilistic risk assessment to support
system trades and demonstrate
compliance with quantitative
requirements (such as those for
planetary protection or orbital debris).
At JPL he has supported the MER, Juno,
SMAP, ARRM, Clipper, and Mars 2020
missions. He contributed to the Hubble
Space Telescope system reliability
review, was a member of the Space
Launch System PRA independent peer

review teams, and served on the peer review panels for STEP
4 system safety certification.

Prior to joining JPL he had a key role in formulating the
approach selected for disposal of US chemical munitions
and the Department of Energy's recommendations
regarding demilitarizing the US nuclear arsenal. Chet is
currently the JPL point of contact for probabilistic risk
assessment.

